CAP UNIVERSITY PRIZE EXAMINATION JANUARY 31, 1990 2 p.m. to 5 p.m.

COMPLETED EXAMINATION BOOKLETS SHOULD BE SENT BY DEPARTMENT CHAIRMEN TO:

DR. V.V. PARANJAPE
DEPARTMENT OF PHYSICS
LAKEHEAD UNIVERSITY
THUNDER BAY, ONTARIO
P7B 5E1

INSTRUCTIONS AND INFORMATION

- 1. The use of calculators is allowed.
- 2. Attempt as many questions as you can in whole or in part.
- 3. ANSWER EACH QUESTION IN A SEPARATE BOOKLET, with the question number and your name on the outer page of each booklet.
- 4. All questions are of equal value, but not of equal difficulty.
- 5. Universal gas constant R = 1.9864 Cal/deg.mole
 - 1 mole of air has a mass of 29 g
 - 1 mole of helium gas has a mass of 4 g
 - 1 mole of gas at 0° C and 1 atm occupies (2.2414) 10^{4} cc

1. A uniform circular cylinder, of weight W and radius a, rests on level ground and is pressed against a rough vertical wall by a horizontal force P through its axis. The contacts of the cylinder with the wall and the ground are equally rough, with coefficient of friction μ . Show that the couple G necessary to rotate the cylinder about its axis in the sense shown, with slipping taking place at both the contacts, is:

2. A pendulum clock for use on a gravity-free spacecraft was constructed. The design consisted of a simple pendulum formed by a massless rod of length L. A mass M was attached to one of its ends while the other end was pivoted so that the simple pendulum could swing in a plane. The pivot was forced to rotate in the same plane, at angular frequency ω in a circle of radius R, thereby creating an artificial gravity for the pendulum. Show that this pendulum simulates the simple pendulum with acceleration $g = \omega^2 R$ for all values of L and all amplitudes of the oscillations.

- 3. There is a spaceship shuttle service between Earth and Mars. Each of the spaceships involved is equipped with two identical lights of proper wavelength λ_0 , one at the front and one at the rear. The spaceships normally travel at a speed v, relative to the Earth, with the result that the headlight of a spaceship approaching the Earth appears green $(\lambda_1 = 5000 \text{ A})$ while the tail-light of a departing spaceship appears red $(\lambda_2 = 6000 \text{ A})$.
 - (a) Determine v and λ_0
 - (b) If a Mars-bound spaceship A accelerates to overtake another Mars-bound spaceship B ahead of it, at what speed must it travel, relative to earth, so that the tail-light of the spaceship B appears to it as a headlight (5000 A green)?
- 4. Obtain an expression for the resolving power $(\lambda/\Delta\lambda)$, of Michelson's interferometer used as a scanning interferometer with a total mirror displacement Δx .
- 5. Consider a balloon filled with 1 mole of helium gas at atmospheric pressure and at temperature 25°C. What is the diameter of the balloon? What is its buoyancy? Compute the internal energy and its specific heat. Assume that the gas is ideal.

- 6. An electrolyte cell has an equation of state $E = E_0 \alpha (T T_0)$ and internal energy $U = U_0 + (E \alpha T)Z + C_Z (T T_0)$ where E is the emf of the cell, Z is the charge on the cell, T is the absolute temperature and U_0 , α , C_Z , and T_0 are constants.
 - a) The cell performs n Carnot cycles where heat Q_H flows out of the heat bath at temperature T_H and heat Q_C flows into the cold bath at temperature T_C during each cycle. What is the entropy change of the hot bath, the cold bath, the cell and the universe?
 - b) Charge ΔZ flows out of the cell, kept under isothermal conditions at temperature T_1 , into a thermally insulated resistor with heat capacity C_p and initially at temperature T_1 also. What is the entropy change of the universe in terms of ΔZ ?
- 7. Two parallel surfaces are maintained at temperatures T_1 and T_2 with $T_1 > T_2$. They are allowed to exchange energy. The emissivities of the surfaces are, respectively, ϵ_1 and ϵ_2 . Derive the expression for the radiative flux of energy from the hot to the cold surface. To provide a radiation shield, a thin metal screen of emissivity ϵ is placed between the two surfaces and is allowed to attain its own temperature. Estimate the factor by which the energy exchange is reduced by the screen, if we assume $\epsilon_1 = \epsilon_2 = \epsilon$.

8. An electron of charge e is moving between two coaxial cylinders of radii a and b (a<b). There is a constant magnetic field through the region r < a, but it does not penetrate into the region a < r < b, where the electron is confined. Ignore r and z motions, and use the Hamiltonian:

$$H = (1/2m)[P_{\varphi} - (e/c) A_{\varphi}]^2$$

where

$$\frac{\partial A_{\varphi}}{\partial \varphi} = 0 \quad \text{and} \quad P_{\varphi} = -\frac{i\hbar}{a} \frac{\partial}{\partial \varphi}$$

to obtain the Schrodinger equation. Show that the energy eigenvalues are

$$E_n = \frac{\hbar^2}{2ma^2} [n + (\phi_0/\phi)]^2$$

where

$$\phi_0 = (2\pi c\hbar/e)$$
 and $\phi = 2\pi aA_{\varphi}$.

 ϕ is the flux trapped in the inner cylinder.

9. The differential amplifier can be used for measuring deviation. If we set, in the circuit below, $R_3=R_4$ and $R_2=R_1+\Delta R$ and connect the two inputs together to the same voltage v (i.e. $v_1=v_2$), express v_0 in terms of ΔR .

10. Resistivity anomalies in the ground can be located as in the figure below. The current I flowing between electrodes C_1 and C_2 establishes an electric field in the ground and one measures the voltage between a pair of electrodes P_1 and P_2 separated by distance b. With b << a , (V/b) is equal to E at position x. Show that if the ground conductivity is uniform and equal to σ

$$(V/b) = - \frac{2axI}{\pi\sigma(x^2-a^2)^2}$$

for infinitely small electrodes.

- 11. Consider a plane Z=0 which divides two semi-infinite regions; the Z>0 region is maintained at potential $V=V_1$, and the Z<0 and Z=0 is maintained at potential $V=V_2$. A beam of particles is incident on the surface with probability current $\hbar \underline{k}_1 |A^2|/m$ particles/cm²-s. Particles in the reflected and transmitted beams have respectively momentums $\hbar \underline{k}_2$ and $\hbar \underline{k}_3$. The vectors \underline{k}_1 , \underline{k}_2 and \underline{k}_3 are all in one plane. Calculate the reflection coefficient R and the transmission coefficient T. Compare the results with the laws of reflection/refraction in optics.
- 12. A homogeneous mixture of enriched uranium and carbon forms the core of a simple nuclear reactor. Suppose that
 - (1) the core is a cube of side L;
 - (2) the neutrons emitted by the uranium travel with an average speed v and a mean free path λ ;
 - (3) neutrons are captured, on an average, after N collisions;
 - (4) for each neutron captured K new neutrons are emitted.

Obtain the rate of change of neutron density, n, in the core. Estimate the size of the pile required to achieve a chain reaction, given that $\lambda = 10$ cm, K = 1.04 and N = 100.