Improving W Boson Mass Templates for Run 2 at CDF

lan Vollrath University of Toronto

CAP Congress
Charlottetown, Prince Edward Island
June 9, 2003

Outline

- Introduction
- W Events at the Tevatron
- Measuring M_W
- ullet Improving W Mass Templates
- Conclusion

Introduction

- Measuring M_W constitutes a test of the Standard Model
- Measuring M_W and M_{top} constrain M_{Higgs}

Introduction

- Best precision measurements to date: CDF and LEP2
- Currently pushing experimental limits to obtain more precise measurements

With Run 2a measurement CDF will have M_W with a precision of $40-60\,\mathrm{MeV}$

W Events at the Tevatron

- ullet W bosons are produced via qar q' o W
- ullet Event signature is a high p_T charged lepton and large E_T

Measuring M_W

Most common method: fit to transverse mass spectrum of the W

 Perform binned maximum likelihood fit to extract mass

Other methods: fit to transverse momentum spectrum of charged lepton or neutrino

Measuring M_W (Uncertainties)

 $^{^\}dagger$ Includes p_T^W , PDFs, higher order QCD corrections and QED radiative corrections

Generating W Mass Templates

- Mass templates are constructed from:
- (i) event generation
- (ii) detector simulation
- corrections are plugged in at the end Event generators contain little or no QCD corrections and QED

Need to improve W event generation for Run 2a M_W measurement

- either QCD or QED effects Recently, several programs have become available that deal well with
- Best ones are: WGRAD for QED and RESBOS for QCD

Merging RESBOS and WGRAD

QCD and QED corrections from each Idea: numerically merge output of programs in a way that preserves the

- In particular want to preserve changes in angular distribution of Wdecay leptons induced by initial state gluon radiation
- 1. Match kinematics of the W bosons from each
- 2. Match a quantity that contains QCD effects
- 3. Boost wgrad W with resbos p_T^W

- ullet M_W and y_W are invariant under boosts
- θ_{CS}^t distribution contains the QCD physics we want

l	l	$ heta_{CS}^{l}$
l u	$l u\gamma$	y_W
l u	$l u\gamma$	M_W
RESBOS	WGRAD	Quantity

Merging RESBOS and WGRAD

- Generated $\sim 100 \text{K}$ unweighted **RESBOS** events
- Matched with a "lookup table" of 100K unweighted wgrad events
- For each **RESBOS** event found closest **WGRAD** event in $(M_W, y_W, \theta_{CS}^t)$ space by minimizing $d=\sqrt{rac{\delta^2 M}{\sigma_M^2}}+rac{\delta^2 heta}{\sigma_{\theta}^2}+rac{\delta^2 y}{\sigma_y^2}$
- Boosted WGRAD event with RESBOS p_T^W

Transverse Mass (generator level)

- Expect a small shift in the peak position (~ tens of MeV) due to QED corrections
- Expect a similar magnitude shift due to RES-BOS effects, also will see some broadening of the peak

Both have cuts:

$$p_T^l, p_T^{\nu} > 25, u < 20$$

Charged Lepton Transverse Momentum (generator level)

Expect similar effects to those for ${\cal M}_T^W$ distribution

Both have cuts:

$$p_T^l, p_T^{\nu} > 25, u < 20$$

Conclusion

- precise measurement can help constrain M_{Higgs} M_W is a fundamental parameter of the Standard Model and a more
- For Run 2a mass measurement need improved W generation
- Numerical merger of **RESBOS** and **WGRAD** is first attempt to patch together a solution
- NLO + QED calculation Need to determine if this method is adequate: if not may need full

Run 2a W mass measurement by $\sim 10\,\mathrm{MeV}$ Potential to drive down overall systematic uncertainty on

Collins-Soper Frame

- the z axis is chosen to bisect the angle between the p and \bar{p} CS frame is a W rest frame where the $p\bar{p}$ pair lies in the xz plane and
- In the CS frame the p and \bar{p} appear to make an angle with z axis due to transverse boost of the ${\cal W}$

