Exclusive branching fraction measurements of semileptonic t decays into three charged hadrons, t ® fpu and t ® fKu.

Ian M. Nugent University of Victoria BaBar Collaboration

CAP Congress 2007 University of Saskatchewan, Saskatoon, Saskatchewan

> Session: Precision Frontier I Monday, June 18, 2007, 10:45

University | British Columbia of Victoria | Canada Email:inugent@uvic.ca

Proudly Funded by

Importance of $|V_{us}|$ and m_s

Elementary Particles

Cabibbo-Kobayashi-Maskawa Matrix

Is a unitary transform matrix that relates quark mass eigenstates to the weak eigenstates.

Strange and non-Strange t-Decays

$$\mathbf{R}_{\tau,\text{Strange}} = \mathbf{R}_{\tau} - \mathbf{R}_{\tau,\text{non-Strange}}$$

Mode	${\cal B}(10^{-3})$
K^-	6.81 ± 0.23
$K^{-}\pi^{0}$	4.54 ± 0.30
$ar{K}^0\pi^-$	8.78 ± 0.38
$K^-\pi^0\pi^0$	0.58 ± 0.24
$ar{K}^0\pi^-\pi^0$	3.60 ± 0.40
$K^-\pi^+\pi^-$	3.30 ± 0.28
$K^-\eta$	0.27 ± 0.06
$(\bar{K}3\pi)^-$ (estimated)	0.74 ± 0.30
$K_1(1270)^-\!\rightarrow\!K^-\omega$	0.67 ± 0.21
$(\bar{K}4\pi)^-$ (estimated) and $K^{*-}\eta$	$0.40{\pm}0.12$
Sum	29.69 ± 0.86

Davier, Hocker, Zhang(RMP 78, 1043, 2006)

t-Spectral Density

The BaBar Detector at SLAC

Tau Energy = ~5.29GeV

DIRC used for K/p separation

The Number of t's at BaBar

The **t**⁻**®h**⁻**h**⁺**n** analysis uses **344fb**⁻¹ Data (on-peak and off-peak)

Selection for t ® h⁻h⁻h⁺n

Events are split into 2 hemispheres from the thrust in the CM.

- Require 1-3 topology with net charge 0
- Require tracks are within acceptance of DIRC and Calorimeter for particle identification $e^+e^- \rightarrow \tau^+(\mu^+\overline{\mu}, \mu) = \tau^-(\pi^-\pi^-\pi^+\mu)$
- Veto conversions ($\gamma \rightarrow e^+e^-$)

Non-τ Background Suppression

- Require missing P_t in event
- Thrust
- Tag tracks require e/µ ID and have upper limit on momentum in CM.
- τ Background suppression
 - Veto on π⁰ and large unassociated net neutral energy
 - Reject K_s
 - No electrons on signal side

K/p Separation and Efficiency

Use dE/dx and Cherenkov angle for K/p separation

Candidates	Decay Modes (Truth)		Preliminary)	
	p ⁻ p ⁻ p⁺u	K⁻p⁻p⁺u	K⁻₱⁻K⁺u	K⁻K⁻K ⁺u
թթ թ + ս	97.68%	22.81%	4.79%	1.02%
K-p-p⁺u	1.42%	74.72%	16.29%	6.50%
K⁻p⁻K⁺u	0.01%	0.52%	60.08%	25.78%
K ⁻ K ⁻ K ⁺ u			0.27%	50.72%

Charge conjugation is implied and wrong signs are used as control samples for determining the systematic uncertainty on the PID. 19/06/2007 CAP 2007

Branching Ratios for t[®]h⁺h⁺n

$$\sum_{j} M_{ij} N_{j}^{Sig} = (N_{i}^{Data} - N_{i}^{Bkg(MC)})$$

$$\Rightarrow N_{j}^{Sig} = \sum_{i} (M^{-1})_{ij} (N_{i}^{Data} - N_{i}^{Bkg(MC)})$$

$$Br_{j} = \frac{1}{2L\sigma_{\tau^{+}\tau^{-}}} \frac{N_{j}^{Sig}}{\epsilon_{TFS,j}}$$

i=Channels Selected
j=Decay Mode

	Decay Modes	(Prelimi	ninary)		
	թթթ⁺ս	K⁻p⁻p⁺u	K⁻p⁻K⁺u	K ⁻ K ⁻ K ⁺ u	
e	2.8%	3.2%	3.5%	3.9%	
Br	(9.11±0.01±0.26)´10 ⁻²	(2.88±0.02±0.11)´10⁻³	(1.371±0.011±0.040)´10 ⁻³	(1.59±0.14±0.11)´10 ⁻⁵ 8.9s Significance	
Br _{PDG}	(9.02±0.08)×10 ⁻²	(3.33±0.35)×10 ⁻³	(1.53±0.10)×10⁻³	<(3.7)×10 ⁻⁵ @ 90% CL	

Systematic Uncertainties for t⁻®h⁺h⁺n

	Decay Modes	(Preli	minary)	
	p ⁻ p ⁻ p⁺u	K⁻p⁻p⁺u	K⁻p⁻K⁺u	K ⁻ K ⁻ K ⁺ u
Ls _{e+e-®t+t} -	2.4%	2.4%	2.4%	2.4%
MC stat and PID	0.4%	2.5%	0.8%	4.4%
Kinematics	1.2%	1.1%	0.9%	4.0%
EMC and DCH	0.8%	0.8%	0.8%	1.2%
Trigger	0.1%	0.1%	0.1%	0.1%
Backgrounds	0.4%	1.4%	0.4%	2.5%
Total	2.9%	3.8%	2.8%	6.9%

Fitting the f Peak in KpKn

To increase statistics for fitting the ϕ peak, the kaon selector was loosened.

The ϕ peak was fitted with a Breit-Wigner convoluted with a Gaussian (σ =1.3MeV) while the background was modeled with a 3rd order polynomial.

Results $\chi^{2}/n.d.f.=26.8/21$ $N^{Sig}=344\pm42$ \Rightarrow **BR(pfn)=(3.49\pm0.55\pm0.32)x10^{-5} 5.5s Significance**

Fitting the f Peak in KKKn

To increase statistics for fitting the ϕ peak, the kaon selector was loosened. The ϕ peak was fitted with a Breit-Wigner convoluted with a Gaussian

(σ=1.3MeV) while the background was modeled with a "ARGUS-Like" function.

In the M_{K+K-} plot both combinations of the K^+K^- are included.

Results

 $\chi^{2/n.d.f.=140/176}$ N^{Sig}=274±16 N^{Bkg}=281±17 \Rightarrow **BR(Kfn)=(3.48±0.20±0.26)x10⁻⁵ 10.6s Significance**

> BR(Kfn)/BR(pfn)~1 Lopez Castro

Update to $|V_{us}|$

Jamin, Moriond EW 2007 and Swagato Banerjee, Kaon 2007

19/06/2007

Conclusion

 $\tau^- \rightarrow \pi^- \pi^- \pi^+ \upsilon$ (ex Ks) measured more precisely than the previous exclusive measurement directly identifying pions

 $\tau \rightarrow K^- \pi^- \pi^+ \upsilon$ has been measured more precisely then the world average.

Conclusion

 $\tau \rightarrow K^-\pi^-K^+\upsilon$ has been measured more $\tau \rightarrow K^-K^-K^+\upsilon$ precisely then the world average. FIRST MEAS

 $\tau \rightarrow K^-K^-K^+\upsilon$ FIRST MEASURMENT!

Conclusion

$\tau \rightarrow \phi \pi \nu$ FIRST MEASURMENT

 $\tau^- \rightarrow \phi K^- \upsilon$ is consistent with saturating $\tau^- \rightarrow K^- K^- K^+ \upsilon$ decay channel. This measurement is also compatible with Belle measurement.